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Six-membered nitrogen ring formation by radical cyclization of
trichloroacetamides with enones. A synthetic entry to

cis-perhydroisoquinoline-3,6-diones
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Abstract—Intramolecular reactions between 1-(carbamoyl)dichloromethyl radicals and enones acting as radical acceptors are re-
ported for the first time. The Bu3SnH promoted 6-exo reaction of trichloroacetamides with enones, avoiding the 1,5-hydrogen
transfer, constitutes a new synthetic entry to cis-perhydoisoquinoline-3,6-diones.
� 2004 Elsevier Ltd. All rights reserved.
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Scheme 1.
Functionalized cis-perhydroisoquinolines are a key
architectural feature in a wide array of biologically
active natural products (e.g., reserpine,1 manzamine,2

and madangamine alkaloids3) as well as a number of
pharmaceuticals, including several HIV protease inhib-
itors.4 Our interest in the madangamine alkaloids5 has
directed our attention to the synthesis of these structural
motifs. As envisioned in Scheme 1, our approach to the
synthesis of functionalized cis-perhydroisoquinolines
involves the radical cyclization of trichloroacetamides
with enones to give perhydroisoquinoline-3,6-diones,6 in
which both carbonyl groups would be useful in building
the backbone of the aforementioned natural products.

The usefulness of the radical processes for the synthesis of
nitrogen heterocycles is well established,7 but there are
relatively few examples of six-membered piperidine ring
elaboration.8 Until now there have been reports of two
radical approaches9;10 based on the use of carbamoyl-
methyl radicals to construct hydroisoquinoline com-
pounds by the formation of the C-4/C-4a bond in the ring
closure step, the radical acceptor being an isolated double
bond in both Stork’s9 and Zard’s work.10 The isoquino-
line derivatives formed in these approaches lack the
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functionalization at C-6 required for our purposes, but it
could be obtained if a radical cyclization upon an enone
group were achieved. This type of cyclization, leading to
six-membered rings in substrates with a hydrogen atom
in the c-position, is scarce,11;12 since it is hampered by the
competitive process of 1,5-hydrogen transfer, which can
totally13 or partially14 preclude the formation of the
six-membered ring. To avoid this unwanted reaction
pathway,15 we decided to attempt the cyclization
using dichloromethylcarbamoyl radical intermediates,
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Scheme 2. Synthesis of cis-perhydroisoquinoline-3,6-diones.
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generated from trichloroacetamides, which have given
excellent results in the synthesis of 2-azabicyclo[3.3.1]-
nonanes by a 6-exo radical cyclization.5;16

As shown in Scheme 2, we tested this new synthetic
entry to cis-perhydroisoquinoline-3,6-diones using three
different trichloroacetamides. The starting material was
aldehyde 2, which was prepared from the monoethylene
acetal of 1,4-cyclohexanedione by Wittig methylena-
tion,17 followed by hydroboration and oxidation in situ
with PCC.18;19 In the first series, the reductive amination
was carried out using benzylamine to form the corres-
ponding imine, which was reduced with NaBH4. The
amine 3a20;21 was converted into the corresponding tri-
chloroacetamide 5a by hydrolysis of acetal and trichloro-
acetylation of the resulting secondary amine 4a. To
generate the enone functionalization of 6a from 5a we
initially used a classical procedure involving the silyl
enol ether formation using TMSI and HMDS followed
by phenylselenylation and hydrogen peroxide oxidation
of the a-phenylselenyl ketone intermediate. The overall
yield was 48%, which was improved up to 80% using
IBX as the oxidizing agent for ketone 5a in a one-step
procedure.22 Treatment of compound 6a in benzene with
Bu3SnH (3.5 equiv) and AIBN under a reflux tempera-
ture provided through a 6-exo radical process the iso-
quinolinedione 1a as a single diastereoisomer in 70%
yield. Under the same reaction conditions, the mono-
chloroacetamide 7 did not give the cyclized compound
1a but the reduced acetamide 8 was formed.23 This result
again shows that the carbamoylmethyl and carb-
amoyldichloromethyl radicals behave differently,5;16a

probably because the two chlorine atoms increase the
pyramidalization at the radical center, which in turn
increases the rate of radical addition to the alkene.24 The
overall cyclization––full reduction process from 6a to
achieve 1a was also carried out successfully using
TTMSS (66% overall yield).

The promising result in the cyclization of 6a prompted
us to extend this methodology to the synthesis of com-
pounds 1b and 1c, which was carried out from trichloro-
acetamides 6b and 6c, prepared in a nonoptimised way
following the protocol depicted in Scheme 2. Compound
1c25 would be of interest in the field of yohimban indole
alkaloids26 since its functionalization could allow access
to the pentacyclic framework of the natural products of
this family that bear a cis-fused isoquinoline fragment.

The relative stereochemistry of 1a was elucidated by 2D
NMR spectra (COSY, HSQC, NOESY) (Scheme 3).27

The stereoselective cis-perhydroisoquinoline formation
agrees with the stereochemical outcome observed in the
related radical cyclizations through a 6-exo process and
with both the steric and electronic preference for a
pseudo axial addition of the dichlorocarbamoylmethyl
radical to the cyclohexenone moiety.28 The key evidence
for the conformational elucidation of 1awas found in the
1H NMR coupling pattern for the methylene protons at
C-1, which appear as dd (J ¼ 12:6 and 5.4Hz). The rel-
ative configuration for the other azabicyclic compounds
1b and 1c is the same as observed in 1a and their NMR
data follows the same pattern of chemical shifts. Inter-
estingly, the monochloro derivative 9, which was isolated
in 56% yield when the cyclization of 6a was carried out
using 2.2 equiv of TTMSS,29 shows a different preferred
conformation to that of 1a (Scheme 3).30

In summary, we report a new method for the synthesis
of functionalized cis-perhydroisoquinolines consisting of
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Bu3SnH or TTMSS/AIBN-promoted radical cyclization
of trichloroacetamides with enones. This constitutes an
example of the otherwise scarce radical process involv-
ing a reaction of a carboradical upon enones to generate
a six-membered ring. Extension of this methodology to
the synthesis of tricyclic skeleton of madangamines is
now underway.
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